

WEEKLY TEST TYJ-02 TEST - 4 Balliwala SOLUTION Date 11-08-2019

[CHEMISTRY]

16.
$$100 amu = (100) \left(\frac{1g}{6.022 \times 10^{23}} \right) = 1.66 \times 10^{-22} g$$

Mass of 7.0 x
$$10^{22}$$
 molecules = $\frac{7.0 \times 10^{22}}{6.022 \times 10^{23}} \times 46h = 5.35g$

Mass of 8.0×10^{-1} mol = 0.8×46 g = 36.8 g

17. Ratio of atoms
$$C:H::\frac{85.6}{12}:\frac{14.4}{1}::7.13:14.4::1:2$$

Simplest formula: CH_2

18.
$$490 \text{ mg H}_2\text{SO}_4 = 490 \times 10^{-3} \text{ g H}_2\text{SO}_4 = \frac{490 \times 10^{-3}}{98} \text{mol}$$

$$= \frac{490 \times 10^{-3} \times 6.02 \times 10^{23}}{98} \text{ molecules} = 3.01 \times 10^{21} \text{ molecules}$$

Molecules left over =
$$(3.01 \times 10^{21}) - (10^{20}) = 3.01 \times 10^{-21} - 0.1 \times 10^{21}$$

= $(3.01 - 0.1) \times 10^{21} = 2.91 \times 10^{21}$

19. Let the mass of
$$O_2 = x$$
 and that of $N_2 = 4x$

No. of molecules of
$$O_2 = \frac{x}{32}$$

No. of molecules of
$$N_2 = \frac{4x}{28} = \frac{x}{7}$$

Ration
$$\frac{x}{32} : \frac{x}{7}$$
 or 7:32

20. Ammonium dichromate is $(NH_4)_2Cr_2O_7$.

1 mole consists of 2 atoms of N, 8 atoms of H, 2 atoms of Cr, and 7 atoms of O. So, total no. of atoms = $(2 + 8 + 2 + 7) \times 6.023 \times 10^{23}$

$$= 114.437 \times 10^{23}$$

21. Moles of water produced =
$$\frac{0.72}{18} = 0.04$$

Moles of
$$CO_2$$
 produced $=\frac{3.08}{44}=0.07$

Equation for combustion of an unknown hydrocarbon, C_xH_y is

$$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O_2$$

$$\Rightarrow$$
 x = 0.07 and $\frac{y}{2} = 0.04 \Rightarrow y = 0.08$ and $\frac{x}{y} = \frac{0.07}{0.08} = \frac{7}{8}$

- 22. (a) Molecular weight $= 2 \times V.D = 2 \times 11.2 = 22.4$
 - : 22.4gm of gas occupies 22.4L at S.T.P.
 - \therefore 11.2gm of gas occupies $\frac{22.4}{22.4} \times 11.2 = 11.2L$.
- 23. (b) Valency of the element = $\frac{2 \times V.D}{E + 35.5} = \frac{2 \times 59.25}{4 + 35.5}$ = $\frac{118.50}{39.5} = 3$.
- 24. (c) [: Molecular weight of $CuSO_4.5H_2O$ = 63.5 + 32 + 64 + 90 = 249.5]

 6×10^{23} molecules has weight = 249.5 gm

$$1\times10^{22}$$
 molecules has weight =
$$\frac{249.5\times1\times10^{22}}{6\times10^{23}}$$
 = $41.58\times10^{-1}~=4.158$

25. (b) One ion carries $3 \times 1.6 \times 10^{-19}$ coulomb

Then 1 gm ion N^{3-} (1 mole) carries

$$= 3 \times 1.6 \times 10^{-19} \times 6.02 \times 10^{23}$$

$$=2.89\times10^5$$
 coulomb

- 26. (b) $Mg + 2HCl \rightarrow MgCl_2 + H_2$
 - \because 24g Mg evolves 22.4L H_2 at STP
 - \therefore 12g Mg evolves H_2 at STP $\frac{22.4}{24} \times 12$
 - =11.2L at STP.
- 27. (c) 1 mole of any gas at STP occupies 22.4L.